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We investigate the dynamics of large-scale and slow deformations of layered structures. Starting from the
respective model equations for a nonconserved system, a conserved system and a binary fluid, we derive the
interface equations which are a coupled set of equations for deformations of the boundaries of each domain. A
further reduction of the degrees of freedom is possible for a nonconserved system such that internal motion of
each domain is adiabatically eliminated. The resulting equation of motion contains only the displacement of the
center of gravity of domains, which is equivalent to the phase variable of a periodic structure. Thus our
formulation automatically includes the phase dynamics of layered structures. In a conserved system and a
binary fluid, however, the internal motion of domains turns out to be a slow variable in the long-wavelength
limit because of concentration conservation. Therefore a reduced description only involving the phase variable
is not generally justified.S1063-651X%97)14610-4

PACS numbegps): 68.10—m, 68.60.Dv, 68.15¢e

I. INTRODUCTION loses stability, and a periodic structure appears supercriti-
cally. However, when the functiod changes abruptly at the
Layered structures appear in various systems in naturénterface separating two adjacent layers, we need to develop
Smectic liquid crystalg1], mesophases in a microphase an alternative method for dynamics. Phase dynamics is still
separation of block copolymer®], magnetic bubbles in meaningful in this case for long-wavelength deformations,
magnetic thin filmg 3], and condensed phases of Langmuirbut the derivation of the phase equation is not possible using
monolayers[4,5] are typical examples in thermal equilib- available theories.
rium. In this paper, we address the above problem. Some years
A layered structure can also be observed in pattern formaago, Kawasaki and one of the auth¢i®] derived a free-
tion far from equilibrium[6]. Turing was the first to predict energy functional of general periodic structures in terms of
a stable periodic structure in a reaction-diffusion system. Rethe displacement fields without assuming the slow variation
cently, a Turing instability has been observed experimentallyf X. Recently a similar analysis has been applied to a model
in a chemical reaction in a g¢lr]. Other well-known ex- specific to Langmuir monolayerisl3]. Here, on the other
amples are roll patterns in Rayleigh-Benard convection anthand, we are concerned with dynamics. The static aspects
Williams domains in the electrohydrodynamic convection ofcan be obtained as a byproduct by taking the equilibrium
liquid crystals. limit. It is emphasized that our theory does not necessarily
In order to study dynamics of these structures, a coarsaely on the existence of a free-energy functional or a
grained description is often employed. Suppose that there isyapunov functional. As a consequence, we can deal with
a periodic layer with period” in the x direction. This is the systems both near equilibrium and far from equilibrium
expressed by a periodic functiol(x+ ¢)=X(x+7+ ¢), in a unified way.
whereX is a physical property ang is a phase and is arbi- Our strategy is to derive the interface equation of motion
trary in a uniform extended system. When the periodic strucfor each domain boundary. Suppose tKataries within one
ture is slightly deformed, its large-scale slow motion can beperiod asX=1 for 0<x<2w and X=—1 for 2w<x</,
described by allowingp to depend orx, y, andt. Sinceg¢is  wherew(<//2) is a constant. Thus there are interfaces at
a neutral mode, it is one of the slowest variables in the longx=0 andx=2w bounding a domain wher&=1. We as-
wavelength limit. The theory based on this idea, which issume the interface width is infinitesimal comparedm@nd
called phase dynamics, was developed in pattern dynamic$. It is generally expected that these two interfaces are
far from equilibrium[8,9,10. coupled to each other as well as to those in other domains.
An essentially similar method can be applied to layeredWe can derive the phase equation of motion from the inter-
structures in equilibriunT11]. One can express the free- face equation by retaining only the average displacement of
energy increase due to deformation in terms of the local distwo interfaces at each domain. The other degree of freedom
placement field as in continuum elastic theory. The locaWwhich makes the center of gravity of a domain time indepen-
displacement field corresponds to the phase variable, and tlient represents the internal motion of domains. In some situ-
dynamic equation for it can be written down by using theations, internal deformations of each domain are relevant to

free-energy functional. the stability. The present theory covers such a domain insta-
Many of the theories assume a sinusoidal functiand  bility.
only a few higher harmonig®f X(x) in the derivation of the The phase variable describes the Goldstone mode associ-

phase equation. This is valid when the system is in the viated with the translational symmetry breaking due to a peri-
cinity of a bifurcation(critical) point where a uniform state odic structure in an extended uniform system, and hence it is
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56 INTERFACE DYNAMICS FOR LAYERED STRUCTURES 5649
a slow variable in the long-wavelength limit. In the terminol- where

ogy of lattice vibrations this corresponds to an acoustic 5
mode. On the other hand, the internal motion of domains is = :f drl f_(
similar to an optical mode, and has a finite energy in the limit GL 2
of long-wavelength deformation. As will be shown below,

this gives rise to a finite relaxation rate of the internal modeand

for small wave numbers in a nonconserved case. Therefore

one may eliminate the internal mode adiabatically. However, FLRZE f d;J' dr'G(r,r)[u(r)—cJlu(r’)—c]. (3
as we will show, the situation is entirely different in a con- 2

served case and a binary fluid. When the interface width &

Vu)2+W(u)—hu )

infinitesimal, and there is ho mass flux through the syste ote that the free energy is generally divided into two parts.

boundary, concentration conservation is equivalent to a corf-6L IS the shortranged part, and is the usual Ginzburg-

servation of total aregvolume in three dimension®f do-  -andau form withW(u) a double-well potential in the or-

mains. Therefore, the internal mode should also be a sIO\E’eer state anl the_externql ﬁel.d' The parameterwhich ,
variable in the long-wavelength limit. Our main concern in is a measure of an interfacial width, is assumed to be suffi-

this paper is to clarify how the phase dynamics is affected bgiently small. The other parf g contains the long-range

the extra slow mode originating from conservation. Interaction, wherex is the mteractlclnestrength and is a
We start with a time-dependent Ginzburg-Landauconstant. The form of the kern&(r,r’) depends on the

(TDGL)-type equation describing the system at the coarsesystem considered. For instance, it is given in a thin mag-

grained level. A general method is available to derive thenetic film of a strongly uniaxial material byi6]

interface equation of motiofil4] from the TDGL equation.

In binary alloys or in crystal growth, on the other hanc_i, it is G(F’F,):f da 4—7T[1—exr(—qD)]eX|iid-(F— ],

also well known that the same equation can be obtained by q

starting at the macroscopic level with the simple diffusion (4)

equation for the minority atoms and employing the Gibbs- . -, ) ) )

Thomson relation as the boundary condition at an infinitelyWhere the integral oveg is taken in a two-dimensional space

sharp interfacg15]. Thus one may wonder why the TDGL _para_llel to the film surfact_a. Note that the order_ parameater

approach is necessary. There are, of course, several reasofisthis case is the magnetization normal to the film which has

First of all, most simulations of spinodal decomposition andthicknessD. The spatial period of a modulated structure is

other phase separation phenomena in binary systems ulggger tharD, and the interface widtl is much smalleer Ehan

TDGL equations, since for many purposes it is more efficienD, i.e., e<D</. Probably the simplest choice &(r,r")

than the macroscopic approach. Hence the interfacial analyhich provides us with a periodic structure in equilibrium is

sis based on the TDGL equation is necessary for a completdie Coulomb Green function

understanding of the simulation results. Second, the interfa- . .

cial method is valid beyond the simple diffusion equation —V2G(r,r')=8(r—r"). (5

which has been used only for macrophase separation and for . ) .

crystal growth. As mentioned above, we will show that our TNiS type of long-range interaction appears in the theory of

method can be useful for both thermal equilibrium structure®hase separation of block copolyméts]. The constant in

and dissipative structures out of equilibrium. Eq. (3) is equated with the spatial average wto avoid a
The organization of this paper is as follows. In Sec. I, wedivergence in the long-range interaction.

make a general argument on layered structures in equilip- !N terms of Fourier components, the sum of the short- and

rium. In Sec. Ill, we derive the interface equation of motion!0Ng-range interactions contains the quadratic part

for a periodic structure in a nonconserved case. In Sec. IV, ir o 6

we verify that the vanishing of one of the diffusion constants 21'(Q)ugu—g. )

in the phase equation is equivalent to free-energy minimizagpare

tion with respect to the spatial period. The method is ex-

tended in Sec. V to a conserved system. In Sec. VI we treat I'(q)=€?9°+aGy— T, 7

a layered structure in binary fluids. The results obtained are

discussed and summarized in Sec. VIl. Some of the details qfjith G, the Fourier transform OG(F— F/)_ The constant

the method used in Sec. Ill are described in the Appendix. comes from the bilinear term in the local pMu)

In order for a stable periodic structure to exist, we assume
Il. PERIODIC STRUCTURES thatT" has a minimum for a finite value of, and that the free

A typical example of a layered structure in a system with®Neragy (1) takes the lowest value for such a mOE’“Ja“O”-
a nonconserved order parameter is a magnetic thin[filsh ~ Hereafter, to be specific, we consider the case wizdrer ')
Experimentg17] show stripe and bubble structures of mag-is given by the screened Coulomb interaction
netic domains depending on the magnitude of the external

magnetic field normal to the film. The free energy of this —(V2=kA)G(r,r")=8(r—r"), 8
system can be written in terms of the local order parameter ) ) L
u(r) as where 1k is the screening length which is assumed to be

much larger thare. In this sense, the interacti({E(F,F’) is
F=Fg.+Fr, 1) still long ranged. The interfacial theory for other forms of
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G(F,F’) can be constructed similarly; in particular, the pure

Coulomb case follows by taking the— 0 limit of the inter-
face equations.

IIl. NONCONSERVED SYSTEM

The time-evolution equation of a nonconserved order pa-

rameteru is determined by the free energy functior(d)
according to

au_ oF

TR 9

It is noted that the right-hand side contains the nonlocal
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FIG. 1. Gently deformed layered structure. The dotted lines in-

long-range interaction. When we derive the interface equagicate an equilibrium configuration witv=/7/2.

tion of motion for layers, it is more convenient to express it

in a local form. To this end, we write E¢9) in the form of
a coupled set of equations as

au(r
T (9('[ )=62V2u+f(u)—v+h, (10
dv F
Ty &('[ )=V20—sz+au, (11

where we have introduced two parametefsand , and
f(u), defined by

dw
fw="4y

(12
The variablev in Eq. (11) is an auxiliary field and has no
physical meaning for modeR). However the set of equa-
tions (10) and (11) appears in pattern formation far from
equilibrium as will be mentioned below. Without loss of
generality, we may put the diffusion constant foequal to
unity. In the limit 7,—0, Eq. (11) can be solved fop by
using G(F,F’) defined by Eq.(8). Substituting it into Eq.
(10) we recover Eq(9).

For a general form of the kernéB(F,F’) in the long-
range interaction, we may replac&v?v—«% by
Jdr'T(r,r")o(r’) whereT'(r,r’) is defined through the re-
lation

f dr'G(r,r"\T(r",r")=58(r—r"). (13

It is remarked that Eqg10) and(11) are model equations

uniform solutions (4,v4) and U,,v,). As shown in Fig. 1,
we consider a layer of domains in two dimensions where the
regionsu=u, andu=u, are arrayed alternatively. We as-
sume the width of a domain in whiah=u; is equal to v
and the period of the layer is.

Now suppose these striped domains are gently curved as
in Fig. 1. We introduce the deformatiod§ (y,t) [, (Y,t)]
around the equilibrium position of the rigtieft) interface in
the nth domain in whichu=u;. Our aim is to derive the
linearized equation of motion faf, . For concreteness, we
hereafter assume the following form 6fu):

f(u)= su(1—-u?). (14)

As was mentioned above, the parametés a measure of
an interface width. Suppose that we are concerned with the
motion of a specific interface. In the limé— 0, the density
u varies rapidly through the interface, but the spatial varia-
tion of v is much slower. Therefore we may replacé Eq.
(10) by its value at the interface, which is denotediqyand
which may depend on time and position on the interface.
Thus Eq.(10) can be written as

au(r)
ot

=e?V2u+f(u)—uv,+h. (15)

71

This is just the TDGL equation with the “external field”
v,—h, and hence the interface equation of motion for this
system is readily obtained:

7V=¢€’H—3e(v,—h), (16)

for pattern dynamics far from equilibrium. For instance, thewhere, for simplicity, we assumed that the absolute value of
Belousov-Zhabotinski reaction in the excitable regime can b& —h is sufficiently small so that the gap of the densityt

described, in its simplest approximation, by E¢k0) and

the interface is approximately equal to \2.is the normal

(12). In fact this set of equations has been extensively stugcomponent of the interface velocity, aktithe mean curva-
ied during the past two decades by applied mathematiciariéire. These are»defmed as follows. First let us introduce a
[19,20. It is well known that Egs(10) and (11) undergo a field variable(r,t) which is positive(negative in the re-
Turing instability whene is small so that a periodic structure gionu>0 (u<0) andy(r,t)=0 specifies the interface con-

approach has not been applied to a periodic solution excepixpressed, respectively, as

for Ref. [21].

We solve Egs(10) and(11) in the limit e—0 to derive
the interface equation of motion. We assume that when the
diffusion terms are absent, these equations have two stable

1 ay

Vyl at

(17)



H=V-.n, (18
with
I v
n=_)—¢. (19)
|Vl

Note thatn is theinward normal of au>0 domain.

From the above definition af, deformationsy™ may be
written asyg=—x+¢"(y,t) and y=x—¢ " (y,t). Substitut-
ing these into Eqs(17), (18), and (16), we obtain, up to
linear order inZ=,

0L, 19t=€?0%L19y?*F 3e(v,— ).
The last term indicates that a domain whare0 shrinks as

—h is increased.

The remaining problem is to determing as a functional
of £, so that Eq(20) becomes a closed set of equations. In
what follows, we need to solve E@ll) for a given set of
¢, . This was carried out in a previous pajp2t] for general
values ofr, to study a dynamical instability of layered do-
mains. Here we consider only the limit— 0. In this limit,
the solution is given by

(20

U(F,t):af dr'G(r,ru(r’,t). (21)
When the absolute value of — h is sufficiently small as we
have assumed, the uniform solutiomg andu, may be ap-
proximated asi;=1 andu,= —1. Actually only the differ-

enceu; — U, enters in the theory given below. The correction
is however, of order  ,—h)? ie.,
u;—u,=2+0[(v,—h)?], and hence does not affect the first

order correction in Eq(16). Therefore Eq(21) can be writ-
ten as

v(F,t)=af (ZdTa)zfdy’

xZ“"‘dx

-,

where we have defined

exdiq-(r—r")]

q 24 K2

m+1

+
m

exdiq-(r—r")]|, (22

2

!
q2+K

b=m/*w+{,. (23

The valuev, in the nth domain, which generally takes a

different value at the right and the left interfaces, is given by“n

v; =v(b, ,y,t).

Now we calculatev, to first order inZ*. Some further

(24)
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where reciprocal-lattice vectors are given B=2mn//
with n integers 6=0,=1,%2,...). Thefirst-order solution
is given from Eq.(A3) in the Appendix by

1 1
(V¥ = —2a§:(y)7 % W(l_cos Dw)

o L
2

ipy
X D °

Y KoQErprr R

dp 1
27/

_e*ZQW§Ed,

n y 2 - Q K

+2aJ e'n/kf

ipy
X D °

Q

dk
2

dp 1
2w /

[ 2iQw

(k_Q)2+p2+K2 € gl-:,p_a:,p]-

(27)

In the derivation of Eqs(26) and (27), we introduced the
Fourier transform

én(y)—f zwf

and used the Poisson formula

gk p exik(n/=w)+iyp],
(28)

©

>

n=—ow

) 1
exp(lkn/)=7% s(k—Q). (29)

Substituting these into EqR0), we obtain the interface equa-
tion of motion. The zeroth-order solution is particularly im-
portant, which reads

2a

:7§

1

Q(QZ sin 2Qw.

2% (30

This specifies the ratia//” of these unknown parameters. It

is readily verified that whein=0, w//'=3, as it should for
the symmetric case. Equatiori30) is equivalent to
a¢,19t=0 without deformations. Hence this is an equilib-
rium condition for a nonconserved system.

From the first-order equation, we obtain the coupled set of
ear equations for™,

Gea

1
72 e (s Rw) g,

€2p2_

Tlﬁglzp: -

details are provided in the Appendix. The zeroth-order solu-

tion is given from Eq.(A2) in the Appendix by

o

UL == % sin Qw, (29

2
Q(Q*+ «%)

1
(k= Q)%+ p?+ &2

Lkpls

bea

T

>

Q

X[~ pte 2 (31
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d _ - Gosa2 1 1 ~ b _4e SaZ 1 1 38
Tigibke™ T €PTT 2 Q2+K2( cos W) &y p VA D- (QTKT)Z( cos Dw), (38
Z 2 2 2 [ p— _— —
/G (k—Q)*+p°tk Dy vz % (Q2+K2)2(1 cos Dw)
X[ = i p)- 32
[ o= Cipl (32) 16a 1 s Q sin Qw\ 2
In order to analyze the motion of long-wavelength deforma- cosQW|/ 4§ (Q%+«)?]

p)

tions, we make the following transformation: S Q%+ k7
D 2 e (39
{n (V)= 2[4 (V) + L (V)] (33
and
W= 3L W=yl (34) - 1
1 ) o K=ﬁz Tz):q)(l—COS@W). (40)
In real space/!) describes the deviation of the center of 779 (R«

gravity of each domain, Whileff) is the internal deformation

of do-main. Note th.ag,(});ﬁo,l b_Ut g'(12):0 for ‘f" uniform become clear in Eq50) below. Equation(37) with the co-
translation of a domain. Thuﬁ_] ) is a phase variable. efficients given by Eqs(38), (39), and (40) is the general
Since we are concerned with large-scale deformations of &, for layered structures. The coefficigfiis always posi-
modulated structure, we may apply a gradient e>_<p_ansi0n tAve andD, is positive at least whew~ //4. Thus the lay-
Egs. (31 and (32). That is, we expand the coefficients of greq structure in the present model system does not cause
these equations in terms &fand p. Retaining the lowest any |inear instabilities in this regime. The coefficieRt,

In Eq. (37), we have factored out&’/4. The reason will

nontrivial order, we obtain, from Eg$31) and (32),

1

(1) — _ ———n
(Q2+K2)2

k,p

d bea
T1gi¢ e2p?+ 7(3k2—p2)%:

X (1—cos Zgw)}gfjg

12 ex

T

(2) T i
kgkyp 2 (0% 1) sin 0w
6ea

(1)
k,p’

>

Q

1
(Q2+ K2)3(1_COS @W)p4£

(39

12ca
_| 222 (2)
epi+ — %

k,p

T i§(2> cos Qw|¢
Ldt ke Q%+ «k?

1
(Q%+«?%)?

6ea

2_ 2
7 (3K =P 2
X (14 cos Qw) {1

12 ex
/,/

(kl) 2 2\2
PG (Q*+k?)

sin 2Qw. (36)

Note that the right-hand side of E@5) vanishes in the limit
k,p—0, whereas that of Eq36) remains finite in this limit.
Hence we may assumg? relaxes more rapidly, and we
may putdg(k?g/dt=0 in Eg.(36). We may then substitute the
solution into Eq.(35) to obtain

d

3e/
ity

4

[D,p?+Dk*+Kp*lgl),  (37)

where

must be identically zero when the spatial perigdis the
equilibrium period. This will be verified separately in Sec.
V.

IV. DETERMINATION OF THE PERIOD

When the system has a free-energy functional, the equi-
librium period should be determined by its minimization. In
this section we show that this is identical to the condition
D, =0. Although this is a well-known factsee, e.g., Ref.
[12]), a verification is necessary to confirm the validity of the
present approach.

We consider a one-dimensional system with the system
sizeL(>/), and write the free energy per unit length as

! d
_L X

F=32

1
f dx’ s(x—=x"yu(x)u(x")+ T f dxWu),
(41)
wheres(x—x'") is the nonlocal interaction. In the case of Eq.
(1) it is given by

2

s(x—x')=€? S(x—x")+aG(x—x"). (42

axax'
The second term of E@41) is the local part. We assume that
the solution of6F/su=0 is spatially periodic.

Now suppose that the system is expanded uniformly so
that the period becomes§(1+ 6) (6<1). Thusu andL are
transformed asi(x) —u[x/(1+ )], L—L(1+ ). The free
energy changes as

1+6

F=5p dyf dy's[(y=y")(L+ &) Ju(y)u(y")

1
+E f dyWu), (43



56 INTERFACE DYNAMICS FOR LAYERED STRUCTURES 5653

wherex/(1+ 8)=y. The free energy increaseF is, there- V. CONSERVED SYSTEM

fore, given up tO(5) by In a phase separation of binary mixtures, the order param-

eter is a local concentration and is a conserved quantity. The

.~ 0 : : :
AF= oL dyJ dy’s(y—y" )u(y)u(y’) time evolution of a conserved system is modeled by
au oF
o ds(y—y’) —=V2—, (51)
+ 5 dfd’—’{—,u u(y’ ot ou
or ) 9] Y=Y g =y Uy

S du(y) This equation with the free energy given by Hd) was
=50 f dYJ dy’ (y=y")s(y—y")| —, U introduced to study a microphase separation of block copoly-
y
mers[22].
(44 When the long-range interaction is absent in Bq, Eq.

(51) is called the Cahn-Hilliard equation for spinodal decom-
This may be rewritten in terms of the Fourier components agosition, and the interface equation of motion has been de-
rived. However, an interfacial analysis for multilayered sys-
tems given by Eq(51) has not previously been obtained, to
our knowledge.
First we reformulate the diffusive mod@1) by introduc-

If u is the equilibrium solutionAF must be identically zero. ing an auxiliary fieldv,
When  s(x—x') is given by Eq. (42,

Af—— 2 [ da
T 2L ) 2w

dsy

dq UgU_g- (45

S.= €202+ a/ (g2 + k?), so that we have au(r e
o= e atallai ) " ;t)=ezvzu+f(u)—af dr’ G(F,F ) U(F" ) —v +h,
. s (dg( ,, aq? (52
AF__Efﬂ(éq_m uqu_q. (46)
go(r) _,  ou(r)
Let us calculate Eq46) explicitly. First of all, we define the Ty VUt (53

equilibrium interfacial energy. Whenf(u) is given by Eq.

(12), itis calculated as where the long-range interaction has been put in(g9). If
dul2 2¢ the constantr were zero in Eq(52), the above set of equa-
Uzezf dx(— == (47)  tions would be essentially the same as the so-called phase-
dx 3 field model for melt growtti23,24). In this case, the variable
v is the local temperature, and the last term in E8p)
where the integral domain overis restricted to the vicinity  stands for the latent heat production upon crystallization.
of an interface. Note that the interface width dependence of Equation(51) can be recovered as follows. We operife
o is different from that in ordinary critical phenomena. How- on both side of Eq(52). Putting7,=0 in Eq.(53), we may
ever, this is only apparent, and is due to the definition of theyrite V2 in terms ofu, and hence Eq(52) becomes a
free energy(2), wheree appears as a coefficient of the gra- closed equation fon. Taking the limitr;— 0, we obtain Eq.
dient term. (51). Thus the expression of the diffusive model as E§8)
By using Eq.(47), we note that and(53) enables us to analyze the interface dynamics almost
) 5 parallel to the nonconserved case.
€ dq , _€ du However, there are two important differences. One is the
L) 274 Y-aTT f x| g% fact thatv, now contains the time derivative ¢f* because
of gu/dt in (53). Putting7,=0, Eq.(15) becomes
The factor of 2 comes from the fact that there are two inter-
faces in each domain. 0=€’H—3e(v;—h). (54)
Since we have assumed that1 for 0<x<2w and
u=—1 for 2w<x</ away from the interfaces, we obtain It should be noted, however, that the contribution from the
third term in Eq.(52) is also included inv,. That is, v,

2
=2

g
Va (48)

a [ dg 92 8a 1 consists of two parts,=v{?+v(?, wherev(?) comes from
L f 27\ (P+ k2)2 Ugl-q= 2 % (Q%+«2)2 the third term in Eq(52) and is given by Eqs26) and(27),
wherea)(?) comes from the fourth term in E¢52), which
X(1—cos DQw). (49 will be evaluated below. Equatiofb3) can be solved as
Putting this together with Eq48), we finally obtain . au(r' )

U(F,t)=J dr'G(r,r") " (55)
4e 8a E 1

5= >3 ———>>(1—cos Dw)=0. 50
3/ /2% Q%+ K2)2( QW) 50 It should be noted that the Green function in E8E) is not

the screened one, E@), but the Coulomb Green function
This precisely agrees with , =0 given by Eq.(38). (5). Using the fact that
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M_ 23 (radx-m/ rw—g; ° 5 ! 1+ (2
%L {Emolx—m/+w—{(y)] 7 m[( cos W)Ly,
— L dlx—m/ —w— ()]}, (56) +i sin 2Qwzi)]
12¢a 1 Gea
—-|ep?+— cos Qw3 — —
where the factor 2 comes from the gapuoét the interfaces, /S Qi b/
we readily obtain, up to linear order i, 1
X(3K*=p)) X a5z zyz(1+cos QW)
Q (Q°+«%) P
2 1 . - )
s@+_Z t_e—2iQwy- 1 12 ea Q
vi /Q(Z:O) (k—Q)2+p2[§k,p Sk - v <1>E s sin 2Q0w—C4&(k)8(p),
(61)
- 2 1 - . where
07 =2 X o[ Gipl, (59)
/o) (k=Q)*+p L ,
C—Z—aE _sin 2w —h (62)
/T QR

where 5(?* is the Fourier component af{?*. In these _ _

expressions we have emphasized thattae® componentis The right-hand sides of Eq$60) and (61) have been ex-

included in the summations. panded in powers df andp, and are the same as those in
The other difference from the nonconserved case is thdeds.(35) and(36), respectively. The unknown constambor,

we have to take account of the conservation law in the interequivalently,C, is determined by Eq(59). That is, in the

face equation of motion. In the nonconserved case, we cordimit k,p—0 in Eq.(61) we obtain

sider the zeroth solution separately as 8f), which deter-

mines the ratiow//. However, in a conserved system this Cc—— 12ea > cos QW 63)
ratio is fixed uniquely in the strong segregation limit by the /S QP4 k2 P00

average volume fraction. In fact, when there is no current
across the system boundary, the conservation law requiresNote from Eq.(63) that the “zeroth’-order term is actually

d
— (2) =
it > deg“

(59

The constanth in Eq. (52) plays the role of a Lagrange
multiplier associated with conditio59).

Substituting Eqs(57) and (58) into Eq. (54), and retain-
ing the zeroth-order term, we obtain

6e 1 .
_ - - _ (1)
7 o TeQrrplimeosRWisy
—i sin 2Qw§(k?g]
6
= | e2p2+ ;a(3k2—p2)

1
_ (1)
X% W(l cos w) &ip

+
l2iea 2
Z k&kp (0% 1) sin 2w
6ea 1
7% [P imeos R,

(60)

not strictly zeroth-order, but turns out to be linearly depen-
dent onZ®.

It should be noted that the summations on the left-hand
side of Egs.(60) and (61) contain theQ=0 component. In
particular, Eq.(61) produces the factor ¢+ p?), which
originates from the conservation law and is dominant in the
long-wavelength limit. Thus Eq$60) and (61) are approxi-
mated as

)=~ TO(D, PP DK+ Kp*) - kB,
(64)
()=~ TR PBU KB, (69
where
240 1—cos Qw
D="7 % Q% D2 (66)
/,/2
(1=
s E 1-cos Qw’ (67)
Q#0 Q*
/’2
="
16’ (69)
16« cos Dw
B, 7 %: Q2+K2 , (69)
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Q sin Qw stage we will take account of the diffusive effect given by
Bo=—7 2 Q%7 (700 the right-hand side of Eq72). Thus the interface velocity

is given from Eq.(72) by

We have omitted the& term, andD, andK are given by
Egs. (38) and (40), respectively. The factoF?) has been I
factored out such that tH, term in Eqs.(64) and(65) have V=-—un, (79
the same coefficient. In this way we have a coupled set of
equations forz™) and ¢{(?), whose relaxation rates vanish in . - .
the limit k,p— 0. where the urllt normal vector is directed inward to a=1

There are two cases where the relaxatiof@t is much domain, andv, is the fluid velocity at the interface. Putting
faster than that of"). One is the limitk—0, whereB, dvldat=0, as usual assuming velocity fields relax rapidly
becomes very large because of @Qe=0 component. Note compared to interface motion, we can solve Ef). Sub-
that D remains finite. The other is the case tBat=0 and  stituting this into Eq(75), we obtain
k?<p?. In these situations we can eliminaf& by putting

=0
V(a)=J' da’zﬂ n*(a)T*A(a,a’)nf(a’)
‘ wp=—T DDk +Kp*1EL, (71) ’, :
dt°kp P X[oH(@")—2ad¢(a’)], (76)

whereD, is the same as in E¢39).
wherea anda’ stand for the position on the interface. The

VI. BINARY FLUIDS tensorT*? is the Oseen tensor, whose Fourier transform is
iven b
Equation(51) has been applied to a microphase separatior%J y
of diblock copolymers. When the sizes of the two blocks are ~ g 1 qeqg?
nearly equal, the system exhibits a lamellar structure in the Ty =0 Oa,p™ ik (77)

microphase-separated state. The kinetics of this phase sepa-
ration have been studied mainly by omitting any hydrody-The constantr is the interfacial energy defined by E@7).
namic effects. However, in some situations, such as when thehe valueg, is the same as, given by Eqs(26) and(27).
system is subjected to shear flow, hydrodynamic effects arfy this case the zeroth-order constant partdgfdoes not

known to cause an instability of a lamellar struct{&]. contribute to Eq(76) because of the relation
Another example in fluids is the formation of a periodic

structure within a Langmuir monolay¢®6,27. However,

since this is an adsorbed system between an air-water inter- , , ,

face, the hydrodynamics are different from that in bi@g]. f da QEB n“(a)T**(a,a’)nf(a’)=0. (78)
One needs a separate treatment of its interface dynamics '

which we do not enter here.

In this section, we consider the conserved system couplefience we may consider only the first-order corrections given

with the local velocity fieldy, by Egs.(26) and(27) for ¢, in Eq. (76).
. The interface equation of motion can be derived from Eg.
au(r) 2 (76). Note thatn has only thex component to lowest order,
" .
at v- VU=V - VA-f(u+4], (72 andn*= -1 for a right interface and*=1 for a left inter-

face. Using the facts that= = 9/=/dt andH = = 9%,/ 9y?,

>

we obtain
= = V20 +(Vu)[— e2V2u—f(u)+ ¢], (73
V24— k2t au=0, (74 952 S TEQMNQ) - ep?

dt 36/ k=Q.p
wheren is the shear viscosity. In order to avoid confusion of
the velocity fieldo with the auxiliary fieldv, we have intro- Gea 1
duced the notatiorp instead ofv for the auxiliaryﬁdeﬁnsity. +— > Q’2+K2(1_COS D'w)
We have imposed the incompressibility conditi®hv =0 Q
and eliminated the pressure term. Thukas only transverse 5 1

. . T €x

icgonrgfggier?téd?;nonlmear convective ternVv has been e g (e T sM(Q") £, (79)

A general form of the interface equation can be derived as
follows. We temporarily ignore the diffusive coupling of the
order parameter given by the right-hand side of @), and  where  is a column vector Withglzg(k,l;)) and 5225(13;),,
consider only the hydrodynamic couplingVu. At the final and M(Q) is a 2x2 matrix with the components
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M1=1—cos Dw, M,=—i sin Qw, M,;=i sin 2Qw and
M,,=1+cos w. The 2x2 matrix N(Q) has the compo-
nents Nj;=1+cos Dw, Ni,=i sin 20w, N, =
—i sin 20w andN,,=1—cos w.

Now we expand Eq(79) in powers ofk andp, where it
should be noted that the summation o¥@rcontains the
Q=0 component. Using the relations

2
XX p

=, 80
k,p 77(k2+p2)2 (80)
p2
™ o™ = 81
k—Q,p 77Q4 ( )
Eq. (79) becomes, in the long-wavelength limit,
. p2
§f<,1;)):—W[(DLPZ+DKZ+KD4)§f<,l,))—iszﬁfé],
(82
w2 YP e ) gD 83
8= 7][ 18ip T kB2 o], (83
where
1-cos Dw
y=17 —ar (84)
470 Q

The reason for the appearance of the fagtoin Eq. (83) is
clear. We have so far ignored the diffusive effect in Et),

and considered only the hydrodynamic interactions. There-
fore, the concentration must be conserved within each do-
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It is emphasized that the basic equati¢h6) and (11) and

(52) and(53) do not possess any Lyapunov functional when

7, and 7, are finite. Although we have taken a limit in which
these parameters vanish, this is simply because we have
demonstrated our theory mainly for the systems near equilib-
rium. The interface dynamics can be formulated without tak-
ing these limits as has already been shown for a noncon-
served reaction-diffusion system in RE21]. In the present
paper, we have extended the methods to conserved systems
and binary fluids.

The motion of domains can be divided into two parts. One
is the collective motion of center of gravity of each domain,
which is described by a phase variaglé). The other is the
internal motion of each domain denoted &Y.

Equations of motion for) and ¢(® in conserved and
nonconserved systems take the following forms:

v SH
=_TW___
ot r 6L (86)
@ - 6H
T &7

wherea=0 for a nonconserved case andg-2 for a con-
served case, and [which should not be confused with the
mean curvature defined by EA.8)] is given by

5§(1)
=1
H= zfdxdv{D( X

1"7{:(1)

ax

2
+D,

Py 2 . a2§(1) 2
+ Y

+B,({?)2+2B, g(zﬁ. (88)

main, and hence the effective diffusion exists only along the

y axis in Eq.(83), i.e., along the interface.

By comparing Eqs(82) and(83), we note that ifk?<p?
andK < yB, for D, =0, the relaxation of(? is rapid so that
we can eliminate it to obtain

2

p

d
aé’ﬂ,l,lZ—n(—szr—psz[Duszer“]é“fgl&- (85

This is also justified whem— 0, since the consta®; be-

This Hamiltonian is invariant under the transformation
x— —x, sincelM) changes its sign whereg&” is invariant.
Using the same reasoning, the coupling tedy(P/ay) ¢?
should not exist. In the case of binary fluids, we can write the
equations formally as

comes infinite in this limit. The coefficients are the same as

those in the previous sections. If necessary, we may add to
Eq. (85) the contribution from the diffusive effect given by
Eqg. (71). This equation has been obtained by several authors

a1 # SH 89
A (V22 ay? 50D ®9
@ #* SH

{ Y (90)

Aoy s

[29,30. However, under general conditions, the phase vari-

able /() has to be coupled with the other slow magl® as
in the set of equation&82) and (83).

VIl. DISCUSSION

These sets of equations show that althougR has a
“mass” term with coefficient8, in H, it does not produce a
finite relaxation rate ot(® in the long-wavelength limit ex-
cept in the nonconserved case. In the conserved system and

We have presented a systematic method to develop tHeinary fluids, the variablg(® is generally a slow mode in
equations governing interface dynamics in layered structureshe limit of long-wavelength deformations because of the
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conservation law. As we have remarkeg can be elimi- dq
nated only when the deformation normal to the layers iSUfO)i=aJ @

spatially sufficiently weak compared with the undulation of
the layers. In fact, Eq¥89) and (90) give us the relaxation
rate 0 of (2 approximately as

_ yp?B;
n

Q@ (92)

B K2 }
yBf (K*+p®)?)’

where the second term is the correction due to the coupling
with £, which is, however, not necessarily small for- 0.

Note that the case of pure Coulomb long-range interac-
tions has to be handled carefully with the linit-0. In all
cases studied here, whenis sufficiently small, the internal
mode ¢ can be eliminated adiabatically, and the phase
variable description involving®) is complete.

XJ dy’E
m
_iQXX/ +iQy(y_y/)]
(m+1)/—-w
—J dx
m/ +w

+iqy(y—y’)]}

dagy m/ +w ) 1
_af 2w % {fm/—wdx ax+

2 2
x T K

fm/er 1 y
dx’ exdiq.(n/=w
e X T2 fidx( )

Pt 2 exdig(n/=w)—iqx’

exdiqy(n/=w)

(m+1)/—w

. 1 . ‘
—igyXx']— dx’mexqu(n/iw)

In this paper, we have restricted ourselves to a one-
dimensional layered structure. However, the theory is easily
extended to those in higher dimensions such as a hexagonal
structure of disk-shaped domains and a face-centered-cubic
structure of spherical domains. Evaluation of nonlinear terms

. . . . .
is also straightforward, although the calculations are more N€ integral ovex” in Eq. (A2) is readily carried out. By
involved. using the Poisson summation formy[29), one can obtain

the zeroth solutior25).
In order to calculate the first order correctiof’*, one

needs to expand,, and{, contained irb,, andb,, , respec-
T.0. is grateful to Masao Doi, Ayako Tetsuka, andtively, in Eqg. (Al). Hence the correction consists of two

Yumino Hayase for valuable discussions at the early stage gfarts:

this work. This work was supported by a Grant-in-Aid of

Ministry of Education, Science and Culture of Japan. D.J. is dq

grateful for the support of the NSF under Grant. No.vflﬁzagﬁ(y)f 2—7: >

m

m/+w X

—ig,x']]. (A2)
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m/ +w , iqy ) ’
J' dx 2JrKzexqu(n/

DMR92-17935. m/—w Ox
APPENDIX _ (m+1)/—w i0x , ‘
W) —igyx']— X' ———=exfgiq,(n/
Here we summarize some of the steps in the derivation of m/+w Oyt &

the coupled set of interface equations of motion in Sec. lll.
From Egs.(22) and (24), the value ofv at an interface is
given explicitly by

*_ da ’ br; ! 1
vi _“J Wjdy 2 “b W

m

di
W) —igX'] +af ﬁ

exdigqy(n/=w—m/s)

xfdy’%‘,

q2+K2

. ) - 1 +i _y' r; refiqxw_ r; ’einW
xexfia(b; ) +iay(y -y~ [N WYYy i)
Ly T £ (y ) e 0], (A3)

Evaluation of the term which contains the factgy(y) is
straightforward, which gives us the first term in E¢26)
and(27). The integrals oveq, andy’ in the remaining term
of Eq. (A3) can be easily carried out by introducing the
Fourier transform(28). Using the formula(29), one finally
obtains the second term in Eq26) and (27).

><exr[iqx(br?—X’)+iqy(y—y’)]}- (A1)

Note thatb,, contains the deformation, (y) as in Eq.(23).
The zeroth ordep(”)* is obtained by ignoring . From
Eq. (Al), it is given by
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