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Interface dynamics for layered structures
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We investigate the dynamics of large-scale and slow deformations of layered structures. Starting from the
respective model equations for a nonconserved system, a conserved system and a binary fluid, we derive the
interface equations which are a coupled set of equations for deformations of the boundaries of each domain. A
further reduction of the degrees of freedom is possible for a nonconserved system such that internal motion of
each domain is adiabatically eliminated. The resulting equation of motion contains only the displacement of the
center of gravity of domains, which is equivalent to the phase variable of a periodic structure. Thus our
formulation automatically includes the phase dynamics of layered structures. In a conserved system and a
binary fluid, however, the internal motion of domains turns out to be a slow variable in the long-wavelength
limit because of concentration conservation. Therefore a reduced description only involving the phase variable
is not generally justified.@S1063-651X~97!14610-4#

PACS number~s!: 68.10.2m, 68.60.Dv, 68.15.1e
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I. INTRODUCTION

Layered structures appear in various systems in nat
Smectic liquid crystals@1#, mesophases in a micropha
separation of block copolymers@2#, magnetic bubbles in
magnetic thin films@3#, and condensed phases of Langm
monolayers@4,5# are typical examples in thermal equilib
rium.

A layered structure can also be observed in pattern for
tion far from equilibrium@6#. Turing was the first to predic
a stable periodic structure in a reaction-diffusion system.
cently, a Turing instability has been observed experiment
in a chemical reaction in a gel@7#. Other well-known ex-
amples are roll patterns in Rayleigh-Benard convection
Williams domains in the electrohydrodynamic convection
liquid crystals.

In order to study dynamics of these structures, a coa
grained description is often employed. Suppose that ther
a periodic layer with periodl in the x direction. This is
expressed by a periodic functionX(x1f)5X(x1l 1f),
whereX is a physical property andf is a phase and is arbi
trary in a uniform extended system. When the periodic str
ture is slightly deformed, its large-scale slow motion can
described by allowingf to depend onx, y, andt. Sincef is
a neutral mode, it is one of the slowest variables in the lo
wavelength limit. The theory based on this idea, which
called phase dynamics, was developed in pattern dynam
far from equilibrium@8,9,10#.

An essentially similar method can be applied to laye
structures in equilibrium@11#. One can express the free
energy increase due to deformation in terms of the local
placement field as in continuum elastic theory. The lo
displacement field corresponds to the phase variable, and
dynamic equation for it can be written down by using t
free-energy functional.

Many of the theories assume a sinusoidal function~and
only a few higher harmonics! of X(x) in the derivation of the
phase equation. This is valid when the system is in the
cinity of a bifurcation~critical! point where a uniform state
561063-651X/97/56~5!/5648~11!/$10.00
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loses stability, and a periodic structure appears superc
cally. However, when the functionX changes abruptly at the
interface separating two adjacent layers, we need to dev
an alternative method for dynamics. Phase dynamics is
meaningful in this case for long-wavelength deformatio
but the derivation of the phase equation is not possible us
available theories.

In this paper, we address the above problem. Some y
ago, Kawasaki and one of the authors@12# derived a free-
energy functional of general periodic structures in terms
the displacement fields without assuming the slow variat
of X. Recently a similar analysis has been applied to a mo
specific to Langmuir monolayers@13#. Here, on the other
hand, we are concerned with dynamics. The static asp
can be obtained as a byproduct by taking the equilibri
limit. It is emphasized that our theory does not necessa
rely on the existence of a free-energy functional or
Lyapunov functional. As a consequence, we can deal w
the systems both near equilibrium and far from equilibriu
in a unified way.

Our strategy is to derive the interface equation of mot
for each domain boundary. Suppose thatX varies within one
period asX51 for 0,x,2w and X521 for 2w,x,l ,
wherew(,l /2) is a constant. Thus there are interfaces
x50 and x52w bounding a domain whereX51. We as-
sume the interface width is infinitesimal compared tow and
l . It is generally expected that these two interfaces
coupled to each other as well as to those in other doma
We can derive the phase equation of motion from the in
face equation by retaining only the average displacemen
two interfaces at each domain. The other degree of freed
which makes the center of gravity of a domain time indep
dent represents the internal motion of domains. In some s
ations, internal deformations of each domain are relevan
the stability. The present theory covers such a domain in
bility.

The phase variable describes the Goldstone mode as
ated with the translational symmetry breaking due to a p
odic structure in an extended uniform system, and hence
5648 © 1997 The American Physical Society
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56 5649INTERFACE DYNAMICS FOR LAYERED STRUCTURES
a slow variable in the long-wavelength limit. In the termino
ogy of lattice vibrations this corresponds to an acous
mode. On the other hand, the internal motion of domain
similar to an optical mode, and has a finite energy in the li
of long-wavelength deformation. As will be shown belo
this gives rise to a finite relaxation rate of the internal mo
for small wave numbers in a nonconserved case. There
one may eliminate the internal mode adiabatically. Howev
as we will show, the situation is entirely different in a co
served case and a binary fluid. When the interface widt
infinitesimal, and there is no mass flux through the syst
boundary, concentration conservation is equivalent to a c
servation of total area~volume in three dimensions! of do-
mains. Therefore, the internal mode should also be a s
variable in the long-wavelength limit. Our main concern
this paper is to clarify how the phase dynamics is affected
the extra slow mode originating from conservation.

We start with a time-dependent Ginzburg-Land
~TDGL!-type equation describing the system at the coa
grained level. A general method is available to derive
interface equation of motion@14# from the TDGL equation.
In binary alloys or in crystal growth, on the other hand, it
also well known that the same equation can be obtained
starting at the macroscopic level with the simple diffusi
equation for the minority atoms and employing the Gibb
Thomson relation as the boundary condition at an infinit
sharp interface@15#. Thus one may wonder why the TDG
approach is necessary. There are, of course, several rea
First of all, most simulations of spinodal decomposition a
other phase separation phenomena in binary systems
TDGL equations, since for many purposes it is more effici
than the macroscopic approach. Hence the interfacial an
sis based on the TDGL equation is necessary for a comp
understanding of the simulation results. Second, the inte
cial method is valid beyond the simple diffusion equati
which has been used only for macrophase separation an
crystal growth. As mentioned above, we will show that o
method can be useful for both thermal equilibrium structu
and dissipative structures out of equilibrium.

The organization of this paper is as follows. In Sec. II, w
make a general argument on layered structures in equ
rium. In Sec. III, we derive the interface equation of moti
for a periodic structure in a nonconserved case. In Sec.
we verify that the vanishing of one of the diffusion consta
in the phase equation is equivalent to free-energy minim
tion with respect to the spatial period. The method is
tended in Sec. V to a conserved system. In Sec. VI we t
a layered structure in binary fluids. The results obtained
discussed and summarized in Sec. VII. Some of the detai
the method used in Sec. III are described in the Append

II. PERIODIC STRUCTURES

A typical example of a layered structure in a system w
a nonconserved order parameter is a magnetic thin film@16#.
Experiments@17# show stripe and bubble structures of ma
netic domains depending on the magnitude of the exte
magnetic field normal to the film. The free energy of th
system can be written in terms of the local order param
u(rW) as

F5FGL1FLR , ~1!
c
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FGL5E drWFe2

2
~¹W u!21W~u!2huG ~2!

and

FLR5
a

2 E drWE drW8G~rW,rW8!@u~rW !2c#@u~rW8!2c#. ~3!

Note that the free energy is generally divided into two pa
FGL is the short-ranged part, and is the usual Ginzbu
Landau form withW(u) a double-well potential in the or
dered state andh the external field. The parametere, which
is a measure of an interfacial width, is assumed to be su
ciently small. The other partFLR contains the long-range
interaction, wherea is the interaction strength andc is a
constant. The form of the kernelG(rW,rW8) depends on the
system considered. For instance, it is given in a thin m
netic film of a strongly uniaxial material by@16#

G~rW,rW8!5E dqW
4p

q
@12exp~2qD!#exp@ iqW •~rW2rW8!#,

~4!

where the integral overqW is taken in a two-dimensional spac
parallel to the film surface. Note that the order parameteu
in this case is the magnetization normal to the film which h
thicknessD. The spatial period of a modulated structure
larger thanD, and the interface widthe is much smaller than
D, i.e., e!D!l . Probably the simplest choice ofG(rW,rW8)
which provides us with a periodic structure in equilibrium
the Coulomb Green function

2¹2Gc~rW,rW8!5d~rW2rW8!. ~5!

This type of long-range interaction appears in the theory
phase separation of block copolymers@18#. The constantc in
Eq. ~3! is equated with the spatial average ofu to avoid a
divergence in the long-range interaction.

In terms of Fourier components, the sum of the short- a
long-range interactions contains the quadratic part

1
2 G~q!uqWu2qW , ~6!

where

G~q!5e2q21aGq2t, ~7!

with Gq the Fourier transform ofG(rW2rW8). The constantt
comes from the bilinear term in the local partW(u).

In order for a stable periodic structure to exist, we assu
thatG has a minimum for a finite value ofq, and that the free
energy ~1! takes the lowest value for such a modulatio
Hereafter, to be specific, we consider the case whereG(rW,rW8)
is given by the screened Coulomb interaction

2~¹22k2!G~rW,rW8!5d~rW2rW8!, ~8!

where 1/k is the screening length which is assumed to
much larger thane. In this sense, the interactionG(rW,rW8) is
still long ranged. The interfacial theory for other forms
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G(rW,rW8) can be constructed similarly; in particular, the pu
Coulomb case follows by taking thek→0 limit of the inter-
face equations.

III. NONCONSERVED SYSTEM

The time-evolution equation of a nonconserved order
rameteru is determined by the free energy functional~1!
according to

]u

]t
52

dF

du
. ~9!

It is noted that the right-hand side contains the nonlo
long-range interaction. When we derive the interface eq
tion of motion for layers, it is more convenient to express
in a local form. To this end, we write Eq.~9! in the form of
a coupled set of equations as

t1

]u~rW !

]t
5e2¹2u1 f ~u!2v1h, ~10!

t2

]v~rW !

]t
5¹2v2k2v1au, ~11!

where we have introduced two parameterst1 and t2 and
f (u), defined by

f ~u!52
dW

du
. ~12!

The variablev in Eq. ~11! is an auxiliary field and has no
physical meaning for model~9!. However the set of equa
tions ~10! and ~11! appears in pattern formation far from
equilibrium as will be mentioned below. Without loss
generality, we may put the diffusion constant forv equal to
unity. In the limit t2→0, Eq. ~11! can be solved forv by
using G(rW,rW8) defined by Eq.~8!. Substituting it into Eq.
~10! we recover Eq.~9!.

For a general form of the kernelG(rW,rW8) in the long-
range interaction, we may replace¹2v2k2v by
*drW8G(rW,rW8)v(rW8) whereG(rW,rW8) is defined through the re
lation

E drW9G~rW,rW9!G~rW9,rW8!5d~rW2rW9!. ~13!

It is remarked that Eqs.~10! and~11! are model equations
for pattern dynamics far from equilibrium. For instance, t
Belousov-Zhabotinski reaction in the excitable regime can
described, in its simplest approximation, by Eqs.~10! and
~11!. In fact this set of equations has been extensively st
ied during the past two decades by applied mathematic
@19,20#. It is well known that Eqs.~10! and ~11! undergo a
Turing instability whene is small so that a periodic structur
can be formed. To our knowledge, however, an interfac
approach has not been applied to a periodic solution ex
for Ref. @21#.

We solve Eqs.~10! and ~11! in the limit e→0 to derive
the interface equation of motion. We assume that when
diffusion terms are absent, these equations have two st
-
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uniform solutions (u1 ,v1) and (u2 ,v2). As shown in Fig. 1,
we consider a layer of domains in two dimensions where
regionsu5u1 and u5u2 are arrayed alternatively. We as
sume the width of a domain in whichu5u1 is equal to 2w
and the period of the layer isl .

Now suppose these striped domains are gently curve
in Fig. 1. We introduce the deformationszn

1(y,t) @zn
2(y,t)#

around the equilibrium position of the right~left! interface in
the nth domain in whichu5u1 . Our aim is to derive the
linearized equation of motion forzn

6 . For concreteness, w
hereafter assume the following form off (u):

f ~u!5 1
2 u~12u2!. ~14!

As was mentioned above, the parametere is a measure of
an interface width. Suppose that we are concerned with
motion of a specific interface. In the limite→0, the density
u varies rapidly through the interface, but the spatial var
tion of v is much slower. Therefore we may replacev in Eq.
~10! by its value at the interface, which is denoted byv I and
which may depend on time and position on the interfa
Thus Eq.~10! can be written as

t1

]u~rW !

]t
5e2¹2u1 f ~u!2v I1h. ~15!

This is just the TDGL equation with the ‘‘external field’
v I2h, and hence the interface equation of motion for th
system is readily obtained:

t1V5e2H23e~v I2h!, ~16!

where, for simplicity, we assumed that the absolute value
v I2h is sufficiently small so that the gap of the densityu at
the interface is approximately equal to 2.V is the normal
component of the interface velocity, andH the mean curva-
ture. These are defined as follows. First let us introduc
field variablec(rW,t) which is positive~negative! in the re-
gion u.0 (u,0) andc(rW,t)50 specifies the interface con
figuration. The velocityV and the mean curvatureH are
expressed, respectively, as

V5
1

u¹W cu

]c

]t
, ~17!

FIG. 1. Gently deformed layered structure. The dotted lines
dicate an equilibrium configuration withw5l /2.
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56 5651INTERFACE DYNAMICS FOR LAYERED STRUCTURES
H5¹W •nW , ~18!

with

nW 5
¹W c

u¹W cu
. ~19!

Note thatnW is the inward normal of au.0 domain.
From the above definition ofc, deformationsz6 may be

written asc52x1z1(y,t) and c5x2z2(y,t). Substitut-
ing these into Eqs.~17!, ~18!, and ~16!, we obtain, up to
linear order inz6,

t1]zn
6/]t5e2]2zn

6/]y273e~v I2h!. ~20!

The last term indicates that a domain whereu.0 shrinks as
v I2h is increased.

The remaining problem is to determinev I as a functional
of zn

6 , so that Eq.~20! becomes a closed set of equations.
what follows, we need to solve Eq.~11! for a given set of
zn

6 . This was carried out in a previous paper@21# for general
values oft2 to study a dynamical instability of layered do
mains. Here we consider only the limitt2→0. In this limit,
the solution is given by

v~rW,t !5aE drW8G~rW,rW8!u~rW8,t !. ~21!

When the absolute value ofv I2h is sufficiently small as we
have assumed, the uniform solutionsu1 andu2 may be ap-
proximated asu151 andu2521. Actually only the differ-
enceu12u2 enters in the theory given below. The correcti
is however, of order (v I2h)2, i.e.,
u12u2521O@(v I2h)2#, and hence does not affect the fir
order correction in Eq.~16!. Therefore Eq.~21! can be writ-
ten as

v~rW,t !5aE dqW

~2p!2 E dy8

3(
m

F E
bm

2

bm
1

dx8
1

q21k2 exp@ iqW •~rW2rW8!#

2E
bm

1

bm11
2

dx8
1

q21k2 exp@ iqW •~rW2rW8!#G , ~22!

where we have defined

bm
65ml 6w1zm

6 . ~23!

The valuev I in the nth domain, which generally takes
different value at the right and the left interfaces, is given

v I
65v~bn

6 ,y,t !. ~24!

Now we calculatev I to first order inz6. Some further
details are provided in the Appendix. The zeroth-order so
tion is given from Eq.~A2! in the Appendix by

v I
~0!65

a

l (
Q

2

Q~Q21k2!
sin 2Qw, ~25!
y

-

where reciprocal-lattice vectors are given byQ52pn/l
with n integers (n50,61,62, . . . ). Thefirst-order solution
is given from Eq.~A3! in the Appendix by

v I
~1!1522azn

1~y!
1

l (
Q

1

Q21k2 ~12cos 2Qw!

12aE dk

2p
einl kE dp

2p

1

l

3(
Q

eipy

~k2Q!21p21k2 @zk,p
1 2e22iQwzk,p

2 #,

~26!

v I
~1!252azn

2~y!
1

l (
Q

1

Q21k2 ~12cos 2Qw!

12aE dk

2p
einl kE dp

2p

1

l

3(
Q

eipy

~k2Q!21p21k2 @e2iQwzk,p
1 2zk,p

2 #.

~27!

In the derivation of Eqs.~26! and ~27!, we introduced the
Fourier transform

zn
6~y!5E dk

2p E dp

2p
zk,p

6 exp@ ik~nl 6w!1 iyp#,

~28!

and used the Poisson formula

(
n52`

`

exp~ iknl !5
1

l (
Q

d~k2Q!. ~29!

Substituting these into Eq.~20!, we obtain the interface equa
tion of motion. The zeroth-order solution is particularly im
portant, which reads

h5
2a

l (
Q

1

Q~Q21k2!
sin 2Qw. ~30!

This specifies the ratiow/l of these unknown parameters.

is readily verified that whenh50, w/l 5 1
4, as it should for

the symmetric case. Equation~30! is equivalent to
]zn

6/]t50 without deformations. Hence this is an equili
rium condition for a nonconserved system.

From the first-order equation, we obtain the coupled se
linear equations forz6,

t1

d

dt
zk,p

1 52F e2p22
6ea

l (
Q

1

Q21k2 ~12cos 2Qw!Gzk,p
1

1
6ea

l (
Q

1

~k2Q!21p21k2

3@2zk,p
1 1e22iQwzk,p

2 #, ~31!
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t1

d

dt
zk,p

2 52F e2p22
6ea

l (
Q

1

Q21k2 ~12cos 2Qw!Gzk,p
2

1
6ea

l (
Q

1

~k2Q!21p21k2

3@e2iQwzk,p
1 2zk,p

2 #. ~32!

In order to analyze the motion of long-wavelength deform
tions, we make the following transformation:

zn
~1!~y!5 1

2 @zn
1~y!1zn

2~y!#, ~33!

zn
~2!~y!5 1

2 @zn
1~y!2zn

2~y!#. ~34!

In real space,zn
(1) describes the deviation of the center

gravity of each domain, whilezn
(2) is the internal deformation

of a domain. Note thatzn
(1)Þ0, but zn

(2)50 for a uniform
translation of a domain. Thuszn

(1) is a phase variable.
Since we are concerned with large-scale deformations

modulated structure, we may apply a gradient expansio
Eqs. ~31! and ~32!. That is, we expand the coefficients
these equations in terms ofk and p. Retaining the lowest
nontrivial order, we obtain, from Eqs.~31! and ~32!,

t1

d

dt
zk,p

~1!52F e2p21
6ea

l
~3k22p2!(

Q

1

~Q21k2!2

3~12cos 2Qw!Gzk,p
~1!

1
12i ea

l
kzk,p

~2!(
Q

Q

~Q21k2!2 sin 2Qw

2
6ea

l (
Q

1

~Q21k2!3 ~12cos 2Qw!p4zk,p
~1! ,

~35!

t1

d

dt
zk,p

~2!52F e2p21
12ea

l (
Q

1

Q21k2 cos 2QwGzk,p
~2!

2
6ea

l
~3k22p2!(

Q

1

~Q21k2!2

3~11cos 2Qw!zk,p
~2!

2
12i ea

l
kzk,p

~1!(
Q

Q

~Q21k2!2 sin 2Qw. ~36!

Note that the right-hand side of Eq.~35! vanishes in the limit
k,p→0, whereas that of Eq.~36! remains finite in this limit.
Hence we may assumez (2) relaxes more rapidly, and w
may putdzk,p

(2)/dt50 in Eq.~36!. We may then substitute th
solution into Eq.~35! to obtain

t1

d

dt
zk,p

~1!52
3el

4
@D'p21D ik21Kp4#zk,p

~1! , ~37!

where
-

a
to

D'5
4e

3l
2

8a

l 2 (
Q

1

~Q21k2!2 ~12cos 2Qw!, ~38!

D i5
24a

l 2 (
Q

1

~Q21k2!2 ~12cos 2Qw!

2
16a

(
Q

cos 2Qw

Q21k2

S 1

l (
Q

Q sin 2Qw

~Q21k2!2 D 2

,

~39!

and

K5
8a

l 2 (
Q

1

~Q21k2!3 ~12cos 2Qw!. ~40!

In Eq. ~37!, we have factored out 3el /4. The reason will
become clear in Eq.~50! below. Equation~37! with the co-
efficients given by Eqs.~38!, ~39!, and ~40! is the general
form for layered structures. The coefficientK is always posi-
tive andD i is positive at least whenw'l /4. Thus the lay-
ered structure in the present model system does not c
any linear instabilities in this regime. The coefficientD'

must be identically zero when the spatial periodl is the
equilibrium period. This will be verified separately in Se
IV.

IV. DETERMINATION OF THE PERIOD

When the system has a free-energy functional, the e
librium period should be determined by its minimization.
this section we show that this is identical to the conditi
D'50. Although this is a well-known fact~see, e.g., Ref.
@12#!, a verification is necessary to confirm the validity of th
present approach.

We consider a one-dimensional system with the sys
sizeL(@l ), and write the free energy per unit length as

F̂5
1

2L E dxE dx8s~x2x8!u~x!u~x8!1
1

L E dxW~u!,

~41!

wheres(x2x8) is the nonlocal interaction. In the case of E
~1! it is given by

s~x2x8!5e2
]2

]x]x8
d~x2x8!1aG~x2x8!. ~42!

The second term of Eq.~41! is the local part. We assume tha
the solution ofdF/du50 is spatially periodic.

Now suppose that the system is expanded uniformly
that the period becomesl (11d) (d!1). Thusu andL are
transformed asu(x)→u@x/(11d)#, L→L(11d). The free
energy changes as

F̂5
11d

2L E dyE dy8s@~y2y8!~11d!#u~y!u~y8!

1
1

L E dyW~u!, ~43!
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wherex/(11d)5y. The free energy increaseDF̂ is, there-
fore, given up toO(d) by

DF̂5
d

2L E dyE dy8s~y2y8!u~y!u~y8!

1
d

2L E dyE dy8~y2y8!Fds~y2y8!

d~y2y8! Gu~y!u~y8!

52
d

2L E dyE dy8~y2y8!s~y2y8!Fdu~y!

dy Gu~y8!.

~44!

This may be rewritten in terms of the Fourier components

DF̂52
d

2L E dq

2p
qFdsq

dq Guqu2q . ~45!

If u is the equilibrium solution,DF̂ must be identically zero
When s(x2x8) is given by Eq. ~42!,

sq5e2q21a/(q21k2), so that we have

DF̂52
d

L E dq

2p S e2q22
aq2

~q21k2!2Duqu2q . ~46!

Let us calculate Eq.~46! explicitly. First of all, we define the
equilibrium interfacial energys. When f (u) is given by Eq.
~12!, it is calculated as

s5e2E dxS du

dxD
2

5
2e

3
, ~47!

where the integral domain overx is restricted to the vicinity
of an interface. Note that the interface width dependence
s is different from that in ordinary critical phenomena. How
ever, this is only apparent, and is due to the definition of
free energy~2!, wheree appears as a coefficient of the gr
dient term.

By using Eq.~47!, we note that

e2

L E dq

2p
q2uqu2q5

e2

L E dxS du

dxD
2

52
s

l
. ~48!

The factor of 2 comes from the fact that there are two int
faces in each domain.

Since we have assumed thatu51 for 0,x,2w and
u521 for 2w,x,l away from the interfaces, we obtain

a

L E dq

2p S q2

~q21k2!2Duqu2q5
8a

l 2 (
Q

1

~Q21k2!2

3~12cos 2Qw!. ~49!

Putting this together with Eq.~48!, we finally obtain

4e

3l
2

8a

l 2 (
Q

1

~Q21k2!2 ~12cos 2Qw!50. ~50!

This precisely agrees withD'50 given by Eq.~38!.
s

of

e

-

V. CONSERVED SYSTEM

In a phase separation of binary mixtures, the order par
eter is a local concentration and is a conserved quantity.
time evolution of a conserved system is modeled by

]u

]t
5¹2

dF

du
. ~51!

This equation with the free energy given by Eq.~1! was
introduced to study a microphase separation of block cop
mers@22#.

When the long-range interaction is absent in Eq.~1!, Eq.
~51! is called the Cahn-Hilliard equation for spinodal deco
position, and the interface equation of motion has been
rived. However, an interfacial analysis for multilayered sy
tems given by Eq.~51! has not previously been obtained,
our knowledge.

First we reformulate the diffusive model~51! by introduc-
ing an auxiliary fieldv,

t1

]u~rW !

]t
5e2¹2u1 f ~u!2aE drW8G~rW,rW8!u~rW8,t !2v1h,

~52!

t2

]v~rW !

]t
5¹2v1

]u~rW !

]t
, ~53!

where the long-range interaction has been put in Eq.~52!. If
the constanta were zero in Eq.~52!, the above set of equa
tions would be essentially the same as the so-called ph
field model for melt growth@23,24#. In this case, the variable
v is the local temperature, and the last term in Eq.~53!
stands for the latent heat production upon crystallization.

Equation~51! can be recovered as follows. We operate¹2

on both side of Eq.~52!. Puttingt250 in Eq. ~53!, we may
write ¹2v in terms of u, and hence Eq.~52! becomes a
closed equation foru. Taking the limitt1→0, we obtain Eq.
~51!. Thus the expression of the diffusive model as Eqs.~52!
and~53! enables us to analyze the interface dynamics alm
parallel to the nonconserved case.

However, there are two important differences. One is
fact thatv I now contains the time derivative ofz6 because
of ]u/]t in ~53!. Puttingt150, Eq. ~15! becomes

05e2H23e~v I2h!. ~54!

It should be noted, however, that the contribution from t
third term in Eq. ~52! is also included inv I . That is, v I

consists of two partsv I5v I
(1)1v I

(2) , wherev I
(1) comes from

the third term in Eq.~52! and is given by Eqs.~26! and~27!,
whereasv I

(2) comes from the fourth term in Eq.~52!, which
will be evaluated below. Equation~53! can be solved as

v~rW,t !5E drW8Gc~rW,rW8!
]u~rW8,t !

]t
. ~55!

It should be noted that the Green function in Eq.~55! is not
the screened one, Eq.~8!, but the Coulomb Green function
~5!. Using the fact that
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]u

]t
522(

m
$żm

2d@x2ml 1w2zm
2~y!#

2 żm
1d@x2ml 2w2zm

1~y!#%, ~56!

where the factor 2 comes from the gap ofu at the interfaces,
we readily obtain, up to linear order inz6,

v̂ I
~2!15

2

l (
Q~50!

1

~k2Q!21p2 @ żk,p
1 2e22iQwżk,p

2 #,

~57!

v̂ I
~2!25

2

l (
Q~50!

1

~k2Q!21p2 @e2iQwżk,p
1 2 żk,p

2 #, ~58!

where v̂ I
(2)6 is the Fourier component ofv I

(2)6 . In these
expressions we have emphasized that then50 component is
included in the summations.

The other difference from the nonconserved case is
we have to take account of the conservation law in the in
face equation of motion. In the nonconserved case, we c
sider the zeroth solution separately as Eq.~30!, which deter-
mines the ratiow/l . However, in a conserved system th
ratio is fixed uniquely in the strong segregation limit by t
average volume fraction. In fact, when there is no curr
across the system boundary, the conservation law requir

d

dt (
n
E dyzn

~2!50. ~59!

The constanth in Eq. ~52! plays the role of a Lagrang
multiplier associated with condition~59!.

Substituting Eqs.~57! and ~58! into Eq. ~54!, and retain-
ing the zeroth-order term, we obtain

6e

l (
Q~50!

1

~k2Q!21p2 @~12cos 2Qw!żk,p
~1!

2 i sin 2Qwżk,p
~2! #

52F e2p21
6ea

l
~3k22p2!

3(
Q

1

~Q21k2!2 ~12cos 2Qw!Gzk,p
~1!

1
12i ea

l
kzk,p

~2!(
Q

Q

~Q21k2!2 sin 2Qw

2
6ea

l (
Q

1

~Q21k2!3 ~12cos 2Qw!p4zk,p
~1! ,

~60!
at
r-
n-

t
s

6e

l (
Q~50!

1

~k2Q!21p2 @~11cos 2Qw!żk,p
~2!

1 i sin 2Qwżk,p
~1! #

52F e2p21
12ea

l (
Q

1

Q21k2 cos 2QwGzk,p
~2!2

6ea

l

3~3k22p2!(
Q

1

~Q21k2!2 ~11cos 2Qw!zk,p
~2!

2
12i ea

l
kzk,p

~1!(
Q

Q

~Q21k2!2 sin 2Qw2Cd~k!d~p!,

~61!

where

C5
2a

l (
Q

sin 2Qw

Q~Q21k2!
2h. ~62!

The right-hand sides of Eqs.~60! and ~61! have been ex-
panded in powers ofk and p, and are the same as those
Eqs.~35! and~36!, respectively. The unknown constanth or,
equivalently,C, is determined by Eq.~59!. That is, in the
limit k,p→0 in Eq. ~61! we obtain

C52
12ea

l (
Q

cos 2Qw

Q21k2 z0,0
~2! . ~63!

Note from Eq.~63! that the ‘‘zeroth’’-order term is actually
not strictly zeroth-order, but turns out to be linearly depe
dent onz (2).

It should be noted that the summations on the left-ha
side of Eqs.~60! and ~61! contain theQ50 component. In
particular, Eq.~61! produces the factor 1/(k21p2), which
originates from the conservation law and is dominant in
long-wavelength limit. Thus Eqs.~60! and ~61! are approxi-
mated as

żk,p
~1!52G~1!@~D'p21Dk21Kp4!zk,p

~1!2 ikB2zk,p
~2! #,

~64!

żk,p
~2!52G~2!~k21p2!@B1zk,p

~2!1 ikB2zk,p
~1! #, ~65!

where

D5
24a

l 2 (
Q

12cos 2Qw

~Q21k2!2 , ~66!

G~1!5
l 2

8 (
QÞ0

12cos 2Qw

Q2

, ~67!

G~2!5
l 2

16
, ~68!

B15
16a

l 2 (
Q

cos 2Qw

Q21k2 , ~69!
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B25
16a

l 2 (
Q

Q sin 2Qw

~Q21k2!2 . ~70!

We have omitted theC term, andD' and K are given by
Eqs. ~38! and ~40!, respectively. The factorG (2) has been
factored out such that theB2 term in Eqs.~64! and~65! have
the same coefficient. In this way we have a coupled se
equations forz (1) andz (2), whose relaxation rates vanish
the limit k,p→0.

There are two cases where the relaxation ofz (2) is much
faster than that ofz (1). One is the limitk→0, whereB1
becomes very large because of theQ50 component. Note
that D remains finite. The other is the case thatD'50 and
k2!p2. In these situations we can eliminatez (2) by putting
ż (2)50:

d

dt
zk,p

~1!52G~1!@D ik21Kp4#zk,p
~1! , ~71!

whereD i is the same as in Eq.~39!.

VI. BINARY FLUIDS

Equation~51! has been applied to a microphase separa
of diblock copolymers. When the sizes of the two blocks
nearly equal, the system exhibits a lamellar structure in
microphase-separated state. The kinetics of this phase s
ration have been studied mainly by omitting any hydrod
namic effects. However, in some situations, such as when
system is subjected to shear flow, hydrodynamic effects
known to cause an instability of a lamellar structure@25#.

Another example in fluids is the formation of a period
structure within a Langmuir monolayer@26,27#. However,
since this is an adsorbed system between an air-water i
face, the hydrodynamics are different from that in bulk@28#.
One needs a separate treatment of its interface dyna
which we do not enter here.

In this section, we consider the conserved system cou
with the local velocity fieldvW ,

]u~rW !

]t
1vW •¹W u5¹2@2e2¹2u2 f ~u!1f#, ~72!

]vW

]t
5h¹2vW 1~¹W u!@2e2¹2u2 f ~u!1f#, ~73!

¹2f2k2f1au50, ~74!

whereh is the shear viscosity. In order to avoid confusion
the velocity fieldvW with the auxiliary fieldv, we have intro-
duced the notationf instead ofv for the auxiliary density.
We have imposed the incompressibility condition¹W •vW 50
and eliminated the pressure term. ThusvW has only transverse
components. The nonlinear convective termvW •¹W vW has been
ignored in Eq.~73!.

A general form of the interface equation can be derived
follows. We temporarily ignore the diffusive coupling of th
order parameter given by the right-hand side of Eq.~72!, and
consider only the hydrodynamic couplingvW •¹W u. At the final
of

n
e
e
pa-
-
he
re

er-

ics

ed

f

s

stage we will take account of the diffusive effect given
the right-hand side of Eq.~72!. Thus the interface velocityV
is given from Eq.~72! by

V52vW I•nW , ~75!

where the unit normal vectornW is directed inward to au51
domain, andvW I is the fluid velocity at the interface. Puttin
]vW /]t50, as usual assuming velocity fields relax rapid
compared to interface motion, we can solve Eq.~73!. Sub-
stituting this into Eq.~75!, we obtain

V~a!5E da8(
a,b

na~a!Tab~a,a8!nb~a8!

3@sH~a8!22af I~a8!#, ~76!

wherea anda8 stand for the position on the interface. Th
tensorTab is the Oseen tensor, whose Fourier transform
given by

T̂q
ab5

1

hq2 Fda,b2
qaqb

q2 G . ~77!

The constants is the interfacial energy defined by Eq.~47!.
The valuef I is the same asv I given by Eqs.~26! and~27!.
In this case the zeroth-order constant part off I does not
contribute to Eq.~76! because of the relation

E da8(
a,b

na~a!Tab~a,a8!nb~a8!50. ~78!

Hence we may consider only the first-order corrections giv
by Eqs.~26! and ~27! for f I in Eq. ~76!.

The interface equation of motion can be derived from E
~76!. Note thatnW has only thex component to lowest order
andnx521 for a right interface andnx51 for a left inter-
face. Using the facts thatV56]z6/]t andH56]2z6/]y2,
we obtain

d

dt
zW5

2

3el (
Q~50!

Tk2Q,p
xx N~Q!F2e2p2

1
6ea

l (
Q8

1

Q821k2 ~12cos 2Q8w!

2
6ea

l (
Q8

1

~k2Q8!21p21k2 M ~Q8!GzW , ~79!

where zW is a column vector withz15zk,p
(1) and z25zk,p

(2) ,
and M (Q) is a 232 matrix with the components
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M11512cos 2Qw, M1252i sin 2Qw, M215 i sin 2Qw and
M22511cos 2Qw. The 232 matrix N(Q) has the compo-
nents N11511cos 2Qw, N125i sin 2Qw, N215
2 i sin 2Qw andN22512cos 2Qw.

Now we expand Eq.~79! in powers ofk andp, where it
should be noted that the summation overQ contains the
Q50 component. Using the relations

Tk,p
xx 5

p2

h~k21p2!2 , ~80!

Tk2Q,p
xx '

p2

hQ4 , ~81!

Eq. ~79! becomes, in the long-wavelength limit,

żk,p
~1!52

p2

h~k21p2!2 @~D'p21Dk21Kp4!zk,p
~1!2 ikB2zk,p

~2! #,

~82!

żk,p
~2!52

gp2

h
@B1zk,p

~2!1 ikB2zk,p
~1! #, ~83!

where

g5 1
2 (

QÞ0

12cos 2Qw

Q4 . ~84!

The reason for the appearance of the factorp2 in Eq. ~83! is
clear. We have so far ignored the diffusive effect in Eq.~72!,
and considered only the hydrodynamic interactions. The
fore, the concentration must be conserved within each
main, and hence the effective diffusion exists only along
y axis in Eq.~83!, i.e., along the interface.

By comparing Eqs.~82! and ~83!, we note that ifk2!p2

andK!gB1 for D'50, the relaxation ofz (2) is rapid so that
we can eliminate it to obtain

d

dt
zk,p

~1!52
p2

h~k21p2!2 @D ik21Kp4#zk,p
~1! . ~85!

This is also justified whenk→0, since the constantB1 be-
comes infinite in this limit. The coefficients are the same
those in the previous sections. If necessary, we may ad
Eq. ~85! the contribution from the diffusive effect given b
Eq. ~71!. This equation has been obtained by several auth
@29,30#. However, under general conditions, the phase v
ablez (1) has to be coupled with the other slow modez (2) as
in the set of equations~82! and ~83!.

VII. DISCUSSION

We have presented a systematic method to develop
equations governing interface dynamics in layered structu
e-
o-
e

s
to

rs
i-

he
s.

It is emphasized that the basic equations~10! and ~11! and
~52! and~53! do not possess any Lyapunov functional wh
t1 andt2 are finite. Although we have taken a limit in whic
these parameters vanish, this is simply because we h
demonstrated our theory mainly for the systems near equ
rium. The interface dynamics can be formulated without ta
ing these limits as has already been shown for a nonc
served reaction-diffusion system in Ref.@21#. In the present
paper, we have extended the methods to conserved sys
and binary fluids.

The motion of domains can be divided into two parts. O
is the collective motion of center of gravity of each doma
which is described by a phase variablez (1). The other is the
internal motion of each domain denoted byz (2).

Equations of motion forz (1) and z (2) in conserved and
nonconserved systems take the following forms:

]z~1!

]t
52G~1!

dH

dz~1! , ~86!

]z~2!

]t
52G~2!~ i¹W !a

dH

dz~2! , ~87!

where a50 for a nonconserved case anda52 for a con-
served case, andH @which should not be confused with th
mean curvature defined by Eq.~18!# is given by

H5 1
2 E dxdyFDS ]z~1!

]x D 2

1D'S ]z~1!

]y D 2

1KS ]2z~1!

]y2 D 2

1B1~z~2!!212B2

]z~1!

]x
z~2!G . ~88!

This Hamiltonian is invariant under the transformatio
x→2x, sincez (1) changes its sign whereasz (2) is invariant.
Using the same reasoning, the coupling term (]z (1)/]y)z (2)

should not exist. In the case of binary fluids, we can write
equations formally as

]z~1!

]t
5

1

h~¹2!2

]2

]y2

dH

dz~1! , ~89!

]z~2!

]t
5

g

h

]2

]y2

dH

dz~2! . ~90!

These sets of equations show that althoughz (2) has a
‘‘mass’’ term with coefficientB1 in H, it does not produce a
finite relaxation rate ofz (2) in the long-wavelength limit ex-
cept in the nonconserved case. In the conserved system
binary fluids, the variablez (2) is generally a slow mode in
the limit of long-wavelength deformations because of t
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conservation law. As we have remarked,z (2) can be elimi-
nated only when the deformation normal to the layers
spatially sufficiently weak compared with the undulation
the layers. In fact, Eqs.~89! and ~90! give us the relaxation
rateV (2) of z (2) approximately as

V~2!5
gp2B1

h F12
B2

2

gB1
2

k2

~k21p2!2G , ~91!

where the second term is the correction due to the coup
with z (1), which is, however, not necessarily small forp→0.

Note that the case of pure Coulomb long-range inter
tions has to be handled carefully with the limitk→0. In all
cases studied here, whenk is sufficiently small, the interna
mode z (2) can be eliminated adiabatically, and the pha
variable description involvingz (1) is complete.

In this paper, we have restricted ourselves to a o
dimensional layered structure. However, the theory is ea
extended to those in higher dimensions such as a hexag
structure of disk-shaped domains and a face-centered-c
structure of spherical domains. Evaluation of nonlinear ter
is also straightforward, although the calculations are m
involved.
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APPENDIX

Here we summarize some of the steps in the derivatio
the coupled set of interface equations of motion in Sec.
From Eqs.~22! and ~24!, the value ofv at an interface is
given explicitly by

v I
65aE dqW

~2p!2 E dy8(
m

F E
bm

2

bm
1

dx8
1

q21k2

3exp@ iqx~bn
62x8!1 iqy~y2y8!#2E

bm
1

bm11
2

dx8
1

q21k2

3exp@ iqx~bn
62x8!1 iqy~y2y8!#G . ~A1!

Note thatbn
6 contains the deformationszn

6(y) as in Eq.~23!.
The zeroth orderv I

(0)6 is obtained by ignoringzn
6 . From

Eq. ~A1!, it is given by
s
f

g

-

e

-
ly
nal
bic
s
e

of

s
.

of
I.

v I
~0!65aE dqW

~2p!2

3E dy8(
m

F E
ml 2w

ml 1w

dx8
1

q21k2 exp@ iqx~nl 6w!

2 iqxx81 iqy~y2y8!#

2E
ml 1w

~m11!l 2w
dx8

1

q21k2 exp@ iqx~nl 6w!2 iqxx8

1 iqy~y2y8!#G
5aE dqx

2p (
m

F E
ml 2w

ml 1w

dx8
1

qx
21k2 exp@ iqx~nl 6w!

2 iqxx8#2E
ml 1w

~m11!l 2w
dx8

1

qx
21k2 exp@ iqx~nl 6w!

2 iqxx8#G . ~A2!

The integral overx8 in Eq. ~A2! is readily carried out. By
using the Poisson summation formula~29!, one can obtain
the zeroth solution~25!.

In order to calculate the first order correctionv I
(1)6 , one

needs to expandzm
6 andzn

6 contained inbm
6 andbn

6 , respec-
tively, in Eq. ~A1!. Hence the correction consists of tw
parts:

v I
~1!65azn

6~y!E dqx

2p (
m

F E
ml 2w

ml 1w

dx8
iqx

qx
21k2 exp@ iqx~nl

6w!2 iqxx8#2E
ml 1w

~m11!l 2w
dx8

iqx

qx
21k2 exp@ iqx~nl

6w!2 iqxx8#G1aE dqW

~2p!2

3E dy8(
m

1

q21k2 exp@ iqx~nl 6w2ml !

1 iqy~y2y8!#@zm
1~y8!e2 iqxw2zm

2~y8!eiqxw

2zm11
2 ~y8!e2 iqx~ l 2w!1zm

1~y8!e2 iqxw#. ~A3!

Evaluation of the term which contains the factorzn
6(y) is

straightforward, which gives us the first term in Eqs.~26!
and~27!. The integrals overqy andy8 in the remaining term
of Eq. ~A3! can be easily carried out by introducing th
Fourier transform~28!. Using the formula~29!, one finally
obtains the second term in Eqs.~26! and ~27!.
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